Abstract

With rapid development of technology and improvement of living standards, the per capita holding of automobiles greatly increases, and the amount of end-of-life vehicles (ELVs) becomes larger and larger such that it is valuable to investigate an effective strategy for recycling ELVs from the viewpoints of environmental protection and resource utilization. In this paper, an optimization model with fuzzy and stochastic parameters is built to formulate the transportation planning problems of recycling ELVs in polymorphic uncertain environment, where the unit processing and transportation costs, the selling price of reused items, and the fixed cost are all fuzzy, while the demand in secondary market and the production capacity are random owing to features underlying the practical data. For this complicated polymorphic uncertain optimization model, a unified compromising approach is proposed to hedge the uncertainty of this model such that some powerful optimization algorithms can be applied to make an optimal recycling plan. Then, an interactive algorithm is developed to find a compromising solution of the uncertain model. Numerical results show efficiency of the algorithm and a number of important managerial insights are revealed from the proposed model by scenario analysis and sensitivity analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.