Abstract

Microwave Kinetic Inductance Detectors (MKIDs) combine significant advantages for photon detection like single photon counting, single pixel energy resolution, vanishing dark counts and µs time resolution with a simple design and the feasibility to scale up into the megapixel range. But high quality MKID fabrication remains challenging as established superconductors tend to either have intrinsic disadvantages, are challenging to deposit or require very low operating temperatures. As alternating stacks of thin Ti and TiN films have shown very impressive results for far-IR and sub-mm MKIDs, they promise significant improvements for UV, visible to near-IR MKIDs as well, especially as they are comparably easy to fabricate and control. In this paper, we present our ongoing project to adapt proximity coupled superconducting films for photon counting MKIDs. Some of the main advantages of Ti/TiN multilayers are their good control of critical temperature (Tc) and their great homogeneity of Tc even over large wafers, promising improved pixel yield especially for large arrays. We demonstrate the effect different temperatures during fabrication have on the detector performance and discuss excess phase noise observed caused by surface oxidization of exposed Si. Our first prototypes achieved photon energy resolving powers of up to 3.1 but turned out to be much too insensitive. As the work presented is still in progress, we also discuss further improvements planned for the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.