Abstract

This study presents an innovative approach to enhancing thermal management in satellite applications by utilizing an embedded aluminum-ammonia heat pipes honeycomb sandwich panel (HPA-PNL) as a high-performance heat sink. The study focuses on developing and evaluating this advanced heat sink technology, addressing the challenges associated with assessing its performance and suitability for satellite use. The research explores the selection of materials and testing methodologies, highlighting the significance of overcoming existing limitations in the absence of standardized testing methods. The results of the thermal conductivity in Z-directions (KZ) indicated that the areas on top of the heat pipes show higher thermal conductivity than those on top of the honeycomb core. Also, the effect of background heat sources and different kinds of thermal interface material (TIM) on HPA-PNL performance is insignificant. The heat dissipation through the heat pipe is substantial, emphasizing the effective ability to dissipate heat for an HPA-PNL with many heat sources acting simultaneously. The outcomes of this study reveal promising testing methods for evaluating the KZ of the HPA-PNL, proposing the potential of the embedded aluminum-ammonia heat pipes honeycomb sandwich panel as a highly effective and efficient heat sink for satellite systems, thus contributing to the advancement of satellite technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call