Abstract

Phase change material (PCM) is an effective thermal management method to improve the thermoelectric conversion performance of a system. PCM can not only absorb excessive thermal energy at high temperature to protect the thermoelectric module (TEM) and increase the maximum available temperature range, but also compensate for intermittent energy to extend the working time of the TEM. In the paper, the transient performance is improved by adding PCM to a traditional thermoelectric generator (TEG) system. Due to the low thermal conductivity of PCM, metal fins are used to improve the thermal conductivity of PCM. To achieve maximum efficiency of the TEG system, the Taguchi method is employed. Four factors are heat source thermal power, PCM type, height of the PCM box, and filling ratio of the PCM, respectively. The results show that heat source thermal power has the greatest effect, and PCM has the least effect on the conversion efficiency of the TEG system. Conversion efficiency from thermal to electricity is about 1.472% during 2300 s of the heating and cooling stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.