Abstract
The cop throttling number $th_c(G)$ of a graph $G$ for the game of Cops and Robbers is the minimum of $k + capt_k(G)$, where $k$ is the number of cops and $capt_k(G)$ is the minimum number of rounds needed for $k$ cops to capture the robber on $G$ over all possible games in which both players play optimally. In this paper, we construct a family of graphs having $th_c(G)= \Omega(n^{2/3})$, establish a sublinear upper bound on the cop throttling number, and show that the cop throttling number of chordal graphs is $O(\sqrt{n})$. We also introduce the product cop throttling number $th_c^{\times}(G)$ as a parameter that minimizes the person-hours used by the cops. This parameter extends the notion of speed-up that has been studied in the context of parallel processing and network decontamination. We establish bounds on the product cop throttling number in terms of the cop throttling number, characterize graphs with low product cop throttling number, and show that for a chordal graph $G$, $th_c^{\times}=1+rad(G)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.