Abstract

BackgroundThe timeliness of diagnostic testing after positive screening remains suboptimal because of limited evidence and methodology, leading to delayed diagnosis of lung cancer and over-examination. We propose a radiomics approach to assist with planning of the diagnostic testing interval in lung cancer screening.MethodsFrom an institute-based lung cancer screening cohort, we retrospectively selected 92 patients with pulmonary nodules with diameters ≥ 3 mm at baseline (61 confirmed as lung cancer by histopathology; 31 confirmed cancer-free). Four groups of region-of-interest-based radiomic features (n = 310) were extracted for quantitative characterization of the nodules, and eight features were proven to be predictive of cancer diagnosis, noise-robust, phenotype-related, and non-redundant. A radiomics biomarker was then built with the random survival forest method. The patients with nodules were divided into low-, middle- and high-risk subgroups by two biomarker cutoffs that optimized time-dependent sensitivity and specificity for decisions about diagnostic workup within 3 months and about repeat screening after 12 months, respectively. A radiomics-based follow-up schedule was then proposed. Its performance was visually assessed with a time-to-diagnosis plot and benchmarked against lung RADS and four other guideline protocols.ResultsThe radiomics biomarker had a high time-dependent area under the curve value (95% CI) for predicting lung cancer diagnosis within 12 months; training: 0.928 (0.844, 0.972), test: 0.888 (0.766, 0.975); the performance was robust in extensive cross-validations. The time-to-diagnosis distributions differed significantly between the three patient subgroups, p < 0.001: 96.2% of high-risk patients (n = 26) were diagnosed within 10 months after baseline screen, whereas 95.8% of low-risk patients (n = 24) remained cancer-free by the end of the study. Compared with the five existing protocols, the proposed follow-up schedule performed best at securing timely lung cancer diagnosis (delayed diagnosis rate: < 5%) and at sparing patients with cancer-free nodules from unnecessary repeat screenings and examinations (false recommendation rate: 0%).ConclusionsTimely management of screening-detected pulmonary nodules can be substantially improved with a radiomics approach. This proof-of-concept study’s results should be further validated in large programs.

Highlights

  • The timeliness of diagnostic testing after positive screening remains suboptimal because of limited evidence and methodology, leading to delayed diagnosis of lung cancer and over-examination

  • Timely management of screening-detected pulmonary nodules can be substantially improved with a radiomics approach

  • We present a radiomics pipeline to select, synthetize, and recode radiomics data extracted from Computed tomography (CT) images and produce follow-up schedules to facilitate timely management of screening-detected nodules

Read more

Summary

Introduction

The timeliness of diagnostic testing after positive screening remains suboptimal because of limited evidence and methodology, leading to delayed diagnosis of lung cancer and over-examination. Low-dose CT screening has been widely accepted as a means of mortality reduction and early detection of lung cancer [1,2,3]. It is a long-term rather than one-take effort because large numbers of indeterminate pulmonary nodules may require diagnostic workups, follow-up scans, or annual repeat screenings [4, 5]. The timeliness of follow-up after positive screening remains suboptimal because of limited evidence [11]. Innovating the way we help patients with nodules to make subsequent decisions is important, as we must weigh the benefits of early cancer diagnosis against the danger and cost of over-investigating unaggressive nodules

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call