Abstract

Singlet fission (SF) is a two-step process in which a singlet splits into two triplets throughout the so-called correlated triplet-pair (1TT) state. Intramolecular SF (iSF) materials, in particular, have attracted growing interest as they can be easily implemented in single-junction solar cells and boost their power conversion efficiency. Still, the potential of iSF materials such as polymers and oligomers for photovoltaic applications has been partially hindered by their ability to go beyond the 1TT intermediate and generate free triplets, whose mechanism remains poorly understood. In this work, the main aspects governing the 1TT dissociation in donor–acceptor copolymers and the key features that optimize this process are exposed. First, we show that both thermodynamics and kinetics play a crucial role in the intramolecular triplet-pair separation and second, we uncover the inherent flexibility of the donor unit as the fundamental ingredient to optimize them simultaneously. Overall, these results provide a better understanding of the intramolecular 1TT dissociation process and establish a new paradigm for the development of novel iSF active materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.