Abstract

AbstractThe development of lightweight composites with desirable thermo‐mechanical properties is progressively increasing. Phthalonitrile (PN) based composites have shown great potential in this regard. However, the basic thermal properties of PN composites required for engineering design are not yet fully understood. In this work, we investigated the thermal stability, thermal expansion behavior and thermal conductivity of PN composites reinforced with carbon fiber (CF) and high silicon fiberglass (HSF) via combined experimental studies and numerical simulations. The results indicated that CF/PN performs better in thermostability than HSF/PN at temperatures below 500°C. Moreover, the incorporation of CF and HSF lowered the coefficient of thermal expansion (CTE) and thermal insulation of PN. At room temperature, the in‐plane CTE of CF/PN and HSF/PN were 1.97E‐6 and 9.24E‐6°C−1, respectively, while the out‐plane thermal conductivities of CF/PN and HSF/PN were 0.65 and 0.34 W/(m K). It is worth noting that an excessively high fiber volume fraction would lead to poor thermal insulation and lightweight properties of the PN composites, while a low fiber volume fraction would result in poor stiffness and thermal dimensional stability. Determined via TOPSIS model, a fiber volume fraction range of 50%–60% was ideal for both composites with comprehensive optimal properties, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.