Abstract
One-sided communication in Message Passing Interface (MPI) requires the use of one of three different synchronization mechanisms, which indicate when the one-sided operation can be started and when the operation is completed. Efficient implementation of the synchronization mechanisms is critical to achieving good performance with one-sided communication. However, our performance measurements indicate that in many MPI implementations, the synchronization functions add significant overhead, resulting in one-sided communication performing much worse than point-to-point communication for short- and medium-sized messages. In this paper, we describe our efforts to minimize the overhead of synchronization in our implementation of one-sided communication in MPICH2. We describe our optimizations for all three synchronization mechanisms defined in MPI: fence, post-start-complete-wait, and lock-unlock. Our performance results demonstrate that, for short messages, MPICH2 performs six times faster than LAM for fence synchronization and 50% faster for post-start-complete-wait synchronization, and it performs more than twice as fast as Sun MPI for all three synchronization methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of High Performance Computing Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.