Abstract
The upper catchment of the Miyun reservoir is an important drinking water source in Beijing. In recent years, researchers have used the soil conservation service curve number (SCS-CN) model to calculate surface runoff for the district. Although the runoff forecasting accuracy was unsatisfactory, the lack of understanding of rainfall processes and their influence on runoff may explain the observed deviations. Our study sought to optimize and assess the SCS-CN model simulation accuracy for the district by proposing an SCS-CN calculation method for each runoff event (CNt) based on observation data for 253 rainfall and runoff events from 7 plots in the Miyun Shixia watershed. This study elucidated a significant positive correlation between the ratio of CNt and the average SCS-CN (CN1), as well as the ratio of the maximum X-minute rainfall amount (PX) to the total rainfall amount for each rainfall event (P). Furthermore, a calculation method involving power function equations between CNt/CN1 and PX/P was proposed for CNt. When X = 5min and the initial abstraction ratio (λ) = 0.01, the simulation performance of the optimized model was the highest, with a Nash-Sutcliffe efficiency coefficient of 0.791, which was significantly higher than that of the non-optimized SCS-CN model. The simulation performance for bare and cultivated land was higher than that of other land uses, with Ef values of 0.831 and 0.828, respectively. Future research should focus on improving the prediction accuracy of runoff events resulting from high-intensity and short-duration rainfall events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.