Abstract

Metal single-atom (MSA) catalysts with 100% metal atom utilization and unique electronic properties are attractive cocatalysts for efficient photocatalysis when coupled with semiconductors. Owing to the absence of a metal-metal bond, MSA sites are exclusively coordinated with the semiconductor photocatalyst, featuring a chemical-bond-driven tunable interaction between the semiconductor and the metal single atom. This semiconductor-MSA interaction is a platform that can facilitate the separation/transfer of photogenerated charge carriers and promote the subsequent catalytic reactions. In this Review, we first introduce the fundamental physicochemistry related to the semiconductor-MSA interaction. We highlight the ligand effect on the electronic structures, catalytic properties and functional mechanisms of the MSA cocatalyst through the semiconductor-MSA interaction. Then, we categorize the state-of-the-art experimental and theoretical strategies for the construction of the efficient semiconductor-MSA interaction at the atomic scale for a wide range of photocatalytic reactions. The examples described include photocatalytic water splitting, CO2 reduction and organic synthesis. We end by outlining strategies on how to further advance the semiconductor-MSA interaction for complex photocatalytic reactions involving multiple elementary steps. We provide atomic and electronic-scale insights into the working mechanisms of the semiconductor-MSA interaction and guidance for the design of high-performance semiconductor-MSA interface photocatalytic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call