Abstract
Image segmentation is a critical procedure in object-based identification and classification of remote sensing data. However, optimal scale-parameter selection presents a challenge, given the presence of complex landscapes and uncertain feature changes. This study proposes a local optimal segmentation approach that considers both intersegment heterogeneity and intrasegment homogeneity, uses the standard deviation and local Moran's index to explore each optimal segment across different scale parameters, and combines the optimal segments into a single layer. The optimal segment is measured by using high-spatial-resolution images. Results show that our approach out-performs and generates less error than the global optimal segmentation approach. The variety of land cover types or intrasegment homogeneity leads to segment matching with the geo-objects on different scales. Local optimal segmentation demonstrates sensitivity to land cover discrepancy and provides good performance on cross-scale segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.