Abstract
Runtime environments for IoT data processing systems based on the actor model often apply a thread pool to serve data streams. In this paper, we propose an approach based on Reinforcement Learning (RL) to find a trade-off between the resource (thread pool in server machines) usage and the quality of service for data streams. We compare our approach and the Thread Pool Executor of Akka, an open-source software toolkit. Simulation results show that our approach outperforms ThreadPoolExecutor with the timeout rule when the thread start times are not negligible. Furthermore, the tuning of our approach is not tedious as the application of the timeout rule requires.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.