Abstract

• A agent-based simulation optimization model is proposed to optimize the release of passenger guidance information in a rail network. • A hybrid heuristic solution algorithm , integrated with passenger simulator and genetic algorithm , is developed. • A case study of Beijing subway is carried out with the large-scale smart card data. The passenger flow guidance is an effective demand management strategy to alleviate the excessive congestion in the urban rail transit network. In order to determine the scope and the timing, a simulation-based optimization model is proposed to optimize the release of passenger flow guidance information in the rail transit network in this paper. In the optimization model, we mainly focus on three aspects namely; where, when and what type of the guidance information should be released to the passengers. In the simulation model, the passenger choice behavior is captured by the agent-based simulation method, which responses to the congestion and the guidance information. Based on this, the dynamic passenger flow distribution can be derived. Furthermore, the adoption rate of the displayed guidance information on passenger information system as well as its impact on passenger travel behavior are also considered in the model. A hybrid heuristic solution algorithm, integrated with passenger simulator and genetic algorithm, is developed to solve the proposed simulation-based optimization model. Finally, a case study of Beijing subway is carried out with the large-scale smart card data. The numerical study shows that the passenger flow demand affects the guidance effect significantly and the best guidance effect can be met with sufficiently high passenger flow demand. And the guidance rate is also found to affect the guidance results. The results also show that the proposed model can provide a detailed guidance scheme for every station at selected time intervals. The results show that the dynamic releasing scheme can save up to a total of 46,319 min in passenger travel time during a single guidance period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call