Abstract

A reflow profile is proposed which is engineered to optimize soldering performance based on defect mechanism analysis. In general, a slow ramp‐up rate is desired in order to minimize hot slump, bridging, tombstoning, skewing, wicking, opens, solder beading, solder balling, and components cracking. A minimized soaking zone reduces voiding, poor wetting, solder balling, and opens. Use of a low peak temperature lessens charring, delamination, intermetallics, leaching, dewetting, and voiding. A rapid cooling rate helps to reduce grain size as well as intermetallic growth, charring, leaching and dewetting. However, a slow cooling rate reduces solder or pad detachment. The optimized profile favors that the temperature ramps up slowly until reaching about 180°C. Implementation of the optimized profile requires the support of a heating‐efficient reflow technology with a controllable heating rate. Emergence of the forced air convection reflow provides a controllable heating rate. In addition, it is not sensitive to variation in parts’ features, thus allows the realization of the optimized profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.