Abstract

In many random search processes of interest in chemistry, biology, or during rescue operations, an entity must find a specific target site before the latter becomes inactive, no longer available for reaction or lost. We present exact results on a minimal model system, a one-dimensional searcher performing a discrete time random walk, or Lévy flight. In contrast with the case of a permanent target, the capture probability and the conditional mean first passage time can be optimized. The optimal Lévy index takes a nontrivial value, even in the long lifetime limit, and exhibits an abrupt transition as the initial distance to the target is varied. Depending on the target lifetime, this transition is discontinuous or continuous, separated by a nonconventional tricritical point. These results pave the way to the optimization of search processes under time constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call