Abstract

Micro- and nanofibers are the universal elements of the optical schemes for solving wide variety of experimental tasks. One usually uses the commercial optical fiber tapering in the burner?s flame to produce such nanofibers. Such tapers are actively used for production of highly sensitive sensors, experiments with the cold atoms and coupling to optical microresonators. The theoretical model of geometrical shape altering during the fiber tapering and heating was adapted in this publication for use in the algorithm with universal adjustment of the tapering modes to get a fiber with the desired set of parameters. One of the innovations was the implementation of the computer vision to control the tapering process. As a result, the nanofibers with the optimal waist diameter of about 700 nm for the radiation wavelength of 1.55 micron were obtained. The optimized methodic of tapering allows the production of the nanofibers with the transmittance of up to 80%. The produced nanofibers were successfully used for coupling to the crystalline whispering gallery mode microresonator. As a result, the optical combs with the spectrum range up to 200 nm were obtained in IR range.. Keywords: Nanofiber, whispering gallery mode microresonator, optical comb, fiber tapering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.