Abstract

Conventional suspension pressurized metered dose inhalers (pMDIs) suffer not only from delivering small amounts of a drug to the lungs, but also the inhaled dose scatters all over the lung regions. This results in much less of the desired dose being delivered to regions of the lungs. This study aimed to improve the aerosol performance of suspension pMDIs by producing primary particles with narrow size distributions. Inkjet spray drying was used to produce respirable particles of salbutamol sulfate. The Next Generation Impactor (NGI) was used to determine the aerosol particle size distribution and fine particle fraction (FPF). Furthermore, oropharyngeal models were used with the NGI to compare the aerosol performances of a pMDI with monodisperse primary particles and a conventional pMDI. Monodisperse primary particles in pMDIs showed significantly narrower aerosol particle size distributions than pMDIs containing polydisperse primary particles. Monodisperse pMDIs showed aerosol deposition on a single stage of the NGI as high as 41.75 ± 5.76%, while this was 29.37 ± 6.79% for a polydisperse pMDI. Narrow size distribution was crucial to achieve a high FPF (49.31 ± 8.16%) for primary particles greater than 2 µm. Only small polydisperse primary particles with sizes such as 0.65 ± 0.28 µm achieved a high FPF with (68.94 ± 6.22%) or without (53.95 ± 4.59%) a spacer. Oropharyngeal models also indicated a narrower aerosol particle size distribution for a pMDI containing monodisperse primary particles compared to a conventional pMDI. It is concluded that, pMDIs formulated with monodisperse primary particles show higher FPFs that may target desired regions of the lungs more effectively than polydisperse pMDIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.