Abstract

Construction decisions can have a significant impact on the security level of critical infrastructures over their entire life cycle. Federal regulations require construction managers and security officers to consider all possible physical security measures to protect critical assets and classified information that reside onsite during the construction phase of critical infrastructure projects. This paper presents the development of an automated multi-objective optimization framework for the planning of construction site layout and security systems of critical infrastructure projects that provides the capability of minimizing overall security risks and minimizing overall site costs. The framework is developed in four main phases: (1) risk identification and system modeling, (2) security lighting optimization, (3) security-cost optimization, and (4) performance evaluation. The automated framework utilizes newly developed metrics for quantifying the security system performance and the impact of site layout planning on the effectiveness of the security system. The performance of the present framework is analyzed using an application example that demonstrates its capabilities in planning construction site security systems and generating optimal tradeoffs between minimizing security risks and minimizing overall site costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call