Abstract

Phosphopeptide enrichment based on metal oxide affinity chromatography is one of the most powerful tools for studying protein phosphorylation on a large scale. To complement existing metal oxide sorbents, we have recently introduced tin dioxide as a promising alternative. The preparation of SnO 2 microspheres by the nanocasting technique, using silica of different morphology as a template, offers a strategy to prepare materials that vary in their particle size and their porosity. Here, we demonstrate how such stannia materials can be successfully generated and their properties fine-tuned in order to obtain an optimized phosphopeptide enrichment material. We combined data from liquid chromatography–mass spectrometry experiments and physicochemical characterization, including nitrogen physisorption and energy-dispersive X-ray spectroscopy (EDX), to explain the influence of the various experimental parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.