Abstract

The widespread adoption of massively parallel processors over the past decade has fundamentally transformed the landscape of high-performance computing hardware. This revolution has recently driven the advancement of FPGAs, which are emerging as an attractive alternative to power-hungry many-core devices in a world increasingly concerned with energy consumption. Consequently, numerous recent studies have focused on implementing efficient dense and sparse numerical linear algebra (NLA) kernels on FPGAs. To maximize the efficiency of these kernels, a key aspect is the exploration of analytical tools to comprehend the performance of the developments and guide the optimization process. In this regard, the roofline model (RLM) is a well-known graphical tool that facilitates the analysis of computational performance and identifies the primary bottlenecks of a specific software when executed on a particular hardware platform. Our previous efforts advanced in developing efficient implementations of the sparse matrix-vector multiplication (SpMV) for FPGAs, considering both speed and energy consumption. In this work, we propose an extension of the RLM that enables optimizing runtime and energy consumption for NLA kernels based on sparse blocked storage formats on FPGAs. To test the power of this tool, we use it to extend our previous SpMV kernels by leveraging a block-sparse storage format that enables more efficient data access.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.