Abstract

The component placement sequence and feeder arrangement are two critical factors determining the assembly time of chip-shooter machine (CS). In addition, the different size of component and different arrangement strategy affect the feeder arrangement and component placement sequence. Based on the engineering analysis, an integrated optimization model of printed circuit board (PCB) assembly for CS machine is established. According to the parallel placement character of CS machine, "Max-Min Ant Colony Algorithm with Communication function (MMAC)" is designed based on traditional Ant Colony Algorithm. The idea that two ants with different duties collaborate to solve the optimization problem is presented. Guide ants optimize placement sequence while executant ants optimize feeder arrangement according to the components placement sequence. The component placement sequence and feeder arrangement are optimized simultaneously

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.