Abstract

The authors are designing a new detector for PET using discrete 4/spl times/4/spl times/10 mm/sup 3/ GSO crystals on a continuous lightguide with 39 mm PMTs. The Light Response Function (LRF) of a detector is the amount of light received by a PMT as a function of the source position. It has to be controlled by a careful design of the lightguide in order to identify 4 mm crystals. The ideal LRF should be narrow with a linear variation over the PMT diameter. Simulations show that a 1.81 cm thick lightguide produces a narrow LRF with good crystal discrimination. However, the tails of this LRF are long. A further improvement can be achieved by using a 2.31 cm lightguide with 5 mm slots cut in its front surface. This results in a sharp edged, almost triangular, LRF. The slotted lightguide also minimizes the spatial dependence on varying depths of interaction of the gamma ray. The effect of varying slot depths was also investigated through the simulations. This was done while keeping the thickness of the lightguide continuous area constant. Experiments were performed and shown to be in general agreement with the simulations. The good spatial resolution and narrow LRF of such a detector will result in a high resolution PET scanner with good count rate capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.