Abstract

Contact tracing is a key tool for managing epidemic diseases like HIV, tuberculosis, COVID-19, and monkeypox. Manual investigations by human-contact tracers remain a dominant way in which this is carried out. This process is limited by the number of contact tracers available, who are often overburdened during an outbreak or epidemic. As a result, a crucial decision in any contact tracing strategy is, given a set of contacts, which person should a tracer trace next? In this work, we develop a formal model that articulates these questions and provides a framework for comparing contact tracing strategies. Through analyzing our model, we give provably optimal prioritization policies via a clean connection to a tool from operations research called a "branching bandit". Examining these policies gives qualitative insight into trade-offs in contact tracing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.