Abstract

Solid-solid sulfur conversion reaction caused by cathode electrolyte interphase (CEI) can effectively prevent the dissolution of lithium polysulfides and theoretically improve the cycle stability of lithium-sulfur (Li–S) batteries. However, once the volume of reduction products (Li2S) exceeds the maximal volume of hosts, the as-formed CEI will be destroyed and significantly shorten the cycle life. In this study, we report a simple capacity control strategy to obtain a stable CEI which can greatly increase the total capacity contribution of Li–S batteries throughout the whole lifespan. By adjusting the discharging condition, Li–S cells achieve a prolonged cycle life over 950 cycles and a remarkable total capacity of 289 Ah g−1 based on sulfur during the whole lifetime. Meanwhile, it is also found that the cycle life depends to a great extent on lithium anodes. This discharging strategy and understanding on the solid phase sulfur conversion under CEI mechanism can advance progress for the development of Li–S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call