Abstract

We report the design of a new quasicrystalline material constructed from discrete molecular building units and based on the Penrose tiling as the basic structural template. The quasicrystal comprises three different molecular components, which is shown to represent the minimum number of components required for a molecular representation of the Penrose tiling. The density of this molecular quasicrystal is comparable to typical densities of crystalline organic materials. With regard to both the number of molecular components and density, the experimental realization of the molecular quasicrystal reported in this paper is considerably more promising than a seven-component, low-density representation of the Penrose tiling that represents the only previous reported example of a molecular quasicrystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.