Abstract

Cryptography hardware design is a key challenge towards the confidentiality advance in the prominent field of the internet of things (IoT). The rise of IoT embedded devices boosts the demand for power- and area- efficient solutions for cryptography hardware. The higher the robustness of the cryptography algorithm is, the higher are the hardware complexity, the circuit area, and energy consumption. Asymmetric algorithms are a particular class widely employed in ultra-secure cryptosystems. The high time-hardness to break the private-key in asymmetric algorithms is a result of its high mathematical complexity. RSA is an asymmetric algorithm that performs successive modular multiplications to encrypt and de-encrypt the information. Therefore, arithmetic operators are the most significant part regarding circuit area and power dissipation. This work evaluates a design space exploration for power- and area-efficient hardware VLSI design in the modular Montgomery multiplier employed in the RSA algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.