Abstract

Objective: The minimum detectable difference (MDD) of computed tomography (CT) scanned images was quantified and optimized according to an indigenous hepatic phantom, line group gauge and Taguchi [Formula: see text] optimization analysis in this work. Methods: Optimal combinations of CT scan factors in every group with the level organization were judged using the Taguchi analysis, in which every factor was organized into only 18 groups, creating evaluated outcomes with the same confidence as if every factor was analyzed independently. The five practical factors of the CT scan were (1) kVp, (2) mAs, (3) pitch increment, (4) field of view (FOV) and (5) rotation time for one loop of CT scan. Insofar as each factor had two or three levels, the total number of 162 (i.e., [Formula: see text]) combinations was considered. Results: The optimal setting was 120[Formula: see text]kVp, 300[Formula: see text]mAs, 0.641 pitch, 320[Formula: see text]mm FOV and 1.0[Formula: see text]s of rotation time of CT scan. The minimal MDD was 2.65[Formula: see text]mm under 0.39[Formula: see text]mm of the slit depth from the revised Student’s [Formula: see text]-test with a 95% confidence level. In contrast, the MDD of conventional and the best one (no. 7) among all original 18 groups were 3.27[Formula: see text]mm and 2.93[Formula: see text]mm for 0.43[Formula: see text]mm and 0.41[Formula: see text]mm slit depths, respectively. Conclusion: The Taguchi analysis was found very lucrative for the design of imaging analysis in practical diagnosis. The indigenous line group gauge and hepatic phantom also proved to be suitable in simulating the human body in real hepatic carcinoma examination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call