Abstract

Abstract In this study, plasma nitrocarburizing at various temperatures in the range of 460–540 °C were carried out on M50NiL steel in order to improve wear properties. The nitrocarburizing temperature was optimized to obtain the best wear properties. The phase composition, microstucture and microhardness profiles of nitrocarburized layers of M50NiL steel were characterized by XRD, optical microscope and Vickers microhardness measurements, respectively. Pin-on-disc tribometer and SEM equipped with EDS were applied to measure friction and wear properties and analyze wear mechanisms involved. XRD results show that the amount of ɛ-Fe 2-3 (N,C) phase increased as the nitrocarburizing temperature rose form 460 °C to 500 °C and then decreased at 540 °C, while the amount of γ′-Fe 4 (N,C) phase increased as the treatment temperature rose. The hardness of the nitrocarburized layers showed an obvious improvement accompanied with the increasing nitrocarburizing temperature, and obtained the maximum surface hardness of 1287 HV at 540 °C. The results of wear tests carried out at various sliding speeds indicated that the wear mechanism depends on sliding speed rather than the nitrocarburizing temperature. With the increase of the sliding speed, the wear mechanism transfers from oxidation mode to abrasive mode. The gradually deceased wear rate of the specimen nitrocarburized at 500 °C with the increase of the sliding speed indicated the excellent wear resistance under high sliding speed condition. Therefore, 500 °C can be selected as an optimized nitrocarburizing temperature for M50NiL steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.