Abstract

A growing number of cities are implementing bike-sharing programs to increase bicycle use. One of the key factors for the success of such programs is the location of bike stations in relation to potential demand (population, activities and public transport stations). This study proposes a GIS-based method to calculate the spatial distribution of the potential demand for trips, locate stations using location–allocation models, determine station capacity and define the characteristics of the demand for stations. The results obtained are compared with the most commonly used location–allocation modeling approaches: minimizing impedance and maximizing coverage. For the objective of this study, the latter approach is more useful. Diminishing returns are observed in both cases: as the number of stations increases, there is less improvement in the fraction of the population covered and accessibility to stations. Because the spatial structure of the proposed network also plays an important role in bike-station use, an additional accessibility analysis was carried out to calculate the volume of activity to which a station has access. With this analysis, stations that are relatively isolated, and therefore of little use to potential users, can be eliminated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.