Abstract

This paper presents a novel integration scheme of solar Photovoltaic (PV) with a large-capacity Doubly Excited Induction Generator (DFIG)-based wind energy system. The proposed scheme leverages both the grid and rotor-side power converters of the DFIG to inject PV power into the grid, eliminating the need for a dedicated converter for PV power processing and offering a cost-effective PV-grid integration solution. The system effectively delivers a substantial amount of PV power to the grid when compared to an equivalent rating inverter used in conventional PV-grid systems. Moreover, the proposed scheme prevents circulating power during sub-synchronous operation in the presence of solar radiation, enhancing overall system efficiency. Additionally, the system's stability benefits from turbine inertia, allowing for higher PV penetration into the power grid. The intermittent complementary nature of solar PV and wind energy sources significantly improves the utilization of the converters. Furthermore, the proposed scheme minimally impacts Maximum Power Point Tracking (MPPT) for PV and wind sources, except in rare environmental glitches, which the PV power control algorithm is adept at handling. The study provides a comprehensive system model used to design the control strategy, supported by analysis, simulations, and experiments conducted on a laboratory prototype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call