Abstract

AbstractThe aim of the present research is evaluating the impact resistance of weft knitted fabrics which are knitted in basic patterns from the high tenacity Nylon 66. The woven fabrics have been applied for manufacturing technical and ballistic textiles so far. Although woven fabrics have been demonstrated satisfactory tensile properties, but they have not been resisted against impact, because of their poor strain against tensile forces. This research is important because knitted fabrics are applied in wide range of applications including technical textiles such as, package belts, safety belts, ballistic belts, and can be used to remove ice from airplane wings. Various knitted fabrics with different knitting elements such as knit, tuck and miss loops were produced. Mechanical properties including strength, work of the rupture and impact resistance of knitted samples were tested. The artificial neural network was used to predict mechanical properties of fabrics produced from the knitted structure as fitness function in genetic algorithm. After that, genetic algorithm was applied to find the optimum structure of knitted fabric with maximum impact resistance. The results of the genetic algorithm show that optimum structure of the fabric is cross-miss and rib structure with high stitch density.

Highlights

  • When a missile hits a fabric, a reflective force is implied to the missile which reduces its speed and at times fabric is deformed and strain waves are transferred to fabric edges through the yarns

  • Missile energy dissipation is influenced by factors such as; fiber type, fabric structure, missile geometry, speed of impact, friction between missile and fabric and friction of yarns and fibers in the fabric

  • Transverse impact behavior is investigated on one layer fabrics (Roylance 1977)

Read more

Summary

Introduction

When a missile hits a fabric, a reflective force is implied to the missile which reduces its speed and at times fabric is deformed and strain waves are transferred to fabric edges through the yarns. Kinetic energy of missile is dissipated by strain energy of yarns in places where slipping friction exists. Missile energy dissipation is influenced by factors such as; fiber type, fabric structure, missile geometry, speed of impact, friction between missile and fabric and friction of yarns and fibers in the fabric. Determining a quantitative value for yarn strain energy, kinetic energy and energy dissipation in places with friction is very difficult and in some cases impossible (Duana et al 2006a). In a fabric system under ballistic impact, parameters like fiber characteristics, weave pattern and its type, number of fabric layers, surface density, missile parameters and impact parameters affect system energy absorption (Cunniff 1992). Surface friction plays an important role in ballistic impact systems which affects energy absorption capacity (Bazhenov 1997)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call