Abstract

Here, a protocol is presented to facilitate the creation of large volumes (> 100 µL) of micro-crystalline slurries suitable for serial crystallography experiments at both synchrotrons and XFELs. The method is based upon an understanding of the protein crystal phase diagram, and how that knowledge can be utilized. The method is divided into three stages: (1) optimizing crystal morphology, (2) transitioning to batch, and (3) scaling. Stage 1 involves finding well diffracting, single crystals, hopefully but not necessarily, presenting in a cube-like morphology. In Stage 2, the Stage 1 condition is optimized by crystal growth time. This strategy can transform crystals grown by vapor diffusion to batch. Once crystal growth can occur within approximately 24 h, a morphogram of the protein and precipitant mixture can be plotted and used as the basis for a scaling strategy (Stage 3). When crystals can be grown in batch, scaling can be attempted, and the crystal size and concentration optimized as the volume is increased. Endothiapepsin has been used as a demonstration protein for this protocol. Some of the decisions presented are specific to endothiapepsin. However, it is hoped that the way they have been applied will inspire a way of thinking about this procedure that others can adapt to their own projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call