Abstract

Simple SummaryNitrogen is one of the most important elements for plant growth and development. However, irrational fertilization causes many environmental problems: high rates of nitrogen fertilizers change the soil pH, encourage nitrate and nitrite accumulation in plants and the soil, leached nitrogen compounds cause water eutrophication and drinking water contamination, and gaseous losses of nitrogen contribute to global warming. The biological nitrogen fixation (BNF) process, in which atmospheric nitrogen is converted to ammonia by microorganisms, has a significant role in the global nitrogen cycle and agriculture. Nitrogen-fixing-bacteria inoculants could help to reduce the losses of consistently rising prices of mineral fertilizers and help to implement green revolution strategies. In this research, we found the bacteria strain Paenibacillus sp. MVY-024 that has a positive impact on nitrogen accumulation in spring wheat and was easily applied on an industrial scale.In this study, thirteen isolates, which were possibly expected to fix nitrogen, were isolated from soil and pea root nodules and identified by the gene analysis of 16S rDNA sequences. Two of these isolates that were able to form endospores and grow on nitrogen-free media were selected for spring wheat development research. The isolate Paenibacillus sp. S7 identified as Paenibacillus polymyxa was found to significantly increase the amount of ammonium and mineral N amounts in the soil. Furthermore, increased nitrogen accumulation in grains and a chlorophyll index were obtained after wheat treatment. Paenibacillus sp. S7 isolate was selected for further studies and the accession number MT900581 and strain name MVY-024 in NCBI nucleotide bank for this isolate were assigned. During the cultivation of Paenibacillus sp. MVY-024, sugarcane molasses and a yeast extract were determined as the most suitable carbon and nitrogen sources, whose optimal concentrations were 100 g L−1 and 10 g L−1, respectively. The optimal pH range for the cell culture was between 6.5 and 7.0, and the optimal air flow rate was 0.4 vvm. It was found that the air flow has an effect on biomass production and endospore formation. After Paenibacillus sp. MVY-024 biomass cultivation optimization, the cultured cell number was, on average, 2.2 × 109 cfu m L−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call