Abstract

As the oil and petrochemical products pass through the oil pipeline, the sediment scale settles, which can cause many problems in the oil fields. Timely detection of the scale inside the pipes and taking action to solve it prevents problems such as a decrease in the efficiency of oil equipment, the wastage of energy, and the increase in repair costs. In this research, an accurate detection system of the scale thickness has been introduced, which its performance is based on the attenuation of gamma rays. The detection system consists of a dual-energy gamma source (241 Am and 133 Ba radioisotopes) and a sodium iodide detector. This detection system is placed on both sides of a test pipe, which is used to simulate a three-phase flow in the stratified regime. The three-phase flow includes water, gas, and oil, which have been investigated in different volume percentages. An asymmetrical scale inside the pipe, made of barium sulfate, is simulated in different thicknesses. After irradiating the gamma-ray to the test pipe and receiving the intensity of the photons by the detector, time characteristics with the names of sample SSR, sample mean, sample skewness, and sample kurtosis were extracted from the received signal, and they were introduced as the inputs of a GMDH neural network. The neural network was able to predict the scale thickness value with an RMSE of less than 0.2, which is a very low error compared to previous research. In addition, the feature extraction technique made it possible to predict the scale value with high accuracy using only one detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.