Abstract
Fucoidan is a sulfated polysaccharide that occurs naturally in the cell wall of brown seaweeds and has substantial biological efficacy. Optimizing the extraction of fucoidan from different brown seaweeds was the primary goal of this research. The optimization of fucoidan extraction was applied on the brown macroalga Turbinaria turbinata using a Box-Behnken Design (BBD) to inspect the impacts of different pH (3, 5, 7), temperature (70, 80, 90 °C) and extraction duration (60, 120, 180 min) on both the yield and sulfate content of fucoidan. The optimized parameters recorded to maximize the fucoidan yield and its sulfate content were a pH of 3.44 and a temperature of 82.26 °C for 60 min. The optimal conditions obtained from BBD were used for fucoidan extraction from T. turbinata, Sargassum cinereum, Padina pavonica, and Dictyota dichotoma. The highest average of fucoidan yield was derived from P. pavonica (40.76 ± 4.04 % DW). FTIR, 1H NMR, and HPLC were used to characterize extracted fucoidan. The extracted fucoidan's Physical characteristics, biochemical composition, antioxidant potential, antitumor effect against breast cancer cells (MCF-7), and antimicrobial and anticoagulant activity were assessed. The extracted fucoidan from D. dichotoma, followed by that extracted from S. cinereum, which had the highest sulphate content, depicted the highest antioxidant, anticancer, and anticoagulant activities. Fucoidan has demonstrated a strong antimicrobial action against some pathogenic microorganisms; Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Candida albicans. The anticoagulant properties of fucoidan from D. dichotoma were stronger than those of fucoidan from S. cinereum, T. turbinata, and P. pavonica due to its higher sulphate content. These findings could be used for various biomedical applications to improve the pharmaceutical industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.