Abstract

AbstractThe investigation of several parameters during fiber push‐out micromechanical tests on the interfacial shear strength (ISS) of the BN interphase in SiCf/SiC ceramic matrix composites (CMC) was undertaken to optimize experimental work. The SiCf/SiC composites—candidate materials for jet engine components—were manufactured with varying fiber types and interlayer thicknesses. Experimental parameters explored included analyzing the effect of sample thickness on the success rate of micromechanical tests, the effect of fiber local environment whether at tow‐level (intra‐tow variability in ISS) or CMC architecture‐level (inter‐tow variability), the effect of nanoindenter flat‐punch tip size, and the effect of the interphase thickness itself. Over 1000 fiber push‐outs were performed and analyzed in this work—with data presented as cumulative distribution functions to compare and contrast samples. It was found that the ISS measured was strongly and statistically influenced by the underlying fiber roughness (interphase adherence), as well as its local fiber environment (e.g., number of nearest neighbors) only if the thickness of the interphase itself surpassed a threshold of 200 nm. Finally for thinner interphases, limited value was added to the CMC as the ISS measured was high and there was no effect from any local environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.