Abstract

Solar flat plate collectors are the most vital parts of a solar heating system. The collector plate absorbs the energy from the sun and transforms this radiation into heat and then transmit this heat into a fluid, it can either water or air. This research paper proposes a new technology to enhance the performance of the solar flat plate collector. A trapezoidal solar reflector is connected with the flat plate collector to enhance the amount of sunlight which hits the collector plate surface. The trapezoidal reflector concentrates both the direct and diffused radiation of the sun towards the flat plate collector. To maximize the concentration of incident radiation the trapezoidal reflector was permitted to change its inclination with the direction of sunlight. A prototype of a solar water heating system with trapezoidal reflector was constructed and achieved the improvement of collector plate efficiency by around 12%-13%. Thus the current solar heating system has the best thermal performance compared to the existing systems.Solar flat plate collectors are the most vital parts of a solar heating system. The collector plate absorbs the energy from the sun and transforms this radiation into heat and then transmit this heat into a fluid, it can either water or air. This research paper proposes a new technology to enhance the performance of the solar flat plate collector. A trapezoidal solar reflector is connected with the flat plate collector to enhance the amount of sunlight which hits the collector plate surface. The trapezoidal reflector concentrates both the direct and diffused radiation of the sun towards the flat plate collector. To maximize the concentration of incident radiation the trapezoidal reflector was permitted to change its inclination with the direction of sunlight. A prototype of a solar water heating system with trapezoidal reflector was constructed and achieved the improvement of collector plate efficiency by around 12%-13%. Thus the current solar heating system has the best thermal performance compared to th...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.