Abstract

This paper optimizes the step coefficients of first-order methods for smooth convex minimization in terms of the worst-case convergence bound (i.e., efficiency) of the decrease in the gradient norm. This work is based on the performance estimation problem approach. The worst-case gradient bound of the resulting method is optimal up to a constant for large-dimensional smooth convex minimization problems, under the initial bounded condition on the cost function value. This paper then illustrates that the proposed method has a computationally efficient form that is similar to the optimized gradient method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.