Abstract

We investigate the optimum driving scheme of a dynamic atomic force microscope with a self-actuated probe for high-speed applications by performing numerical simulations. We compare the recently developed methods such as Q-control, dynamic PID control, and modified Q-control methods to the standard tapping mode by considering scan speed and peak transient forces. In addition, the effects of driving frequency and set-point amplitude on the maximum achievable scan speed for the same probe-sample system are discussed. We find that the scan speed can be increased significantly at the expense of increased peak transient forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call