Abstract

AbstractIn this paper, a spacecraft radiator formed in a honeycomb structure is designed to enhance the thermal performance while reducing its mass. Examples of design guidelines for radiator configurations, such as the distance between heat pipes, facesheet thickness, and honeycomb core density, are suggested. To derive the analytic solution of the governing equation, a linear approximation is used and the accuracies of the solutions are verified with a fourth-order finite-difference method. There exist optimal combinations of design parameters that minimize the radiator mass while maintaining its heat rejection capacity. The heat rejection rate that minimizes the mass per unit heat rejection and the pertinent radiator shape also is presented. The combinations of optimal design are different among the three surface treatments and their characteristics are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call