Abstract

Room air filters, which usually closely resemble high-efficiency particulate air (HEPA) filters, should be designed to maximize the clean air delivery rate (CADR) rather than operate at the very high collection efficiencies and relatively high pressure drops associated with HEPA filters. That is, for fixed electrical energy consumption, filters should remove the most particles possible. This can be accomplished by designing room filters that operate at lower collection efficiencies and higher airflow rates than HEPA filters. Based on filtration theory, the CADR of a fibrous filter is maximized with respect to filter thickness and air velocity at fixed energy consumption and filtration area. For very small particles for which diffusional deposition is the predominant collection mechanism, it is shown that a filter thickness resulting in a collection efficiency of 82% is optimal. For somewhat larger particles having diameters close to the filter's most penetrating size, direct interception is included in the analysis. The importance of inertial impaction and electrostatic deposition is also considered. This article supports the belief that room air filters used for enhancing indoor air quality can be improved significantly and suggests a methodology to accomplish this improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call