Abstract

The efficient removal of highly toxic polyhalogenated biphenyls is rather challenging, mainly due to the difficulties in splitting C-X (X = Cl or Br) bond with high bond energy, as well as the transfer of active hydrogen species during the reduction dehalogenation process. In this work, sub-nanometer Pd–Pt alloy clusters (ca. 1 nm) supported on defect-containing TiO2(B) nanosheets (PdPt/TB), on absorption of visible light illumination (λ > 400 nm), were prepared and served as an efficient photocatalysts for dehalogenation of polyhalogenated biphenyls with H2O as the hydrogen source. An optimal sample (Pd0.7Pt0.3/TB) shows the highest photocatalytic dehalogenation efficiency for 3,3′,4,4′-trtrachlorobiphenyl (PCB77) within 30 mins, which is 12.5, 3.5 and 3 times higher than that of Pt1/TB, Pd1/TB, and Pd0.7 + Pt0.3/TB samples, respectively. Besides, 4,4′-dibromobiphenyl (PBB15) was also completely removed within 10 mins by using Pd0.7Pt0.3/TB photocatalyst, demonstrating its potential applications. Experiments and d-band theory calculations revealed that the introduction of Pt can regulate the d-band center of Pd to strength the interaction between active hydrogen with alloy and promote the transfer of hydrogen species. Meanwhile, Pd–Pt alloy is conducive to activate the C-X bond of polyhalogenated biphenyls. Finally, a mechanism based on Pd–Pt alloy clusters synergistic interaction is proposed at the molecular level. This work demonstrates the successful synthesis of sub-nanometer Pd–Pt alloy nanoclusters and elucidates the effect of interaction among Pd, Pt and supports, providing an efficient method for the removal of polyhalogenated compounds by photocatalytic technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call