Abstract
Our study sheds light on the role of secondary phases in optimizing the magnetic properties of LSMO, offering valuable insights into the relationship between impurity phases, Curie temperature (TC), and magnetic entropy change. To achieve this goal, the Mn, Ni, and Mo elements were individually incorporated into the LSMO matrix to the formation of secondary phases. The solid-state reaction method was employed to create composite materials of (0.8)La0.67Sr0.33MnO3 + (0.2)A (A=Mn, Ni, and Mo). XRD and SEM results confirmed the successful formation of impurity phases within the main LSMO phase. From temperature-dependent magnetization (M(T)) measurements, it was determined that the TC of the samples approach towards room temperature with the existence of impurity phases. Additionally, the relationship between electron bandwidth (W) and TC was examined. The lowest TC value was observed for the lowest value of W. Besides these, the effect of the formation of impurity phases on the maximum magnetic entropy change (-ΔSMmax\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-\\Delta {S}_{M}^{max}$$\\end{document}) value is examined, and it is seen that impurity phases cause a decrease in the (-ΔSMmax)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(-\\Delta {S}_{M}^{max})$$\\end{document} values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.