Abstract

<p style="text-align: justify;"><strong>Aim</strong>: To optimize the concentrations of growth regulators in the media for the proficient micropropagation of grapevine (<em>Vitis vinifera </em>L.) cv. King’s Ruby.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Apical meristems of the grape cultivar were used to establish <em>in vitro</em> shoot cultures. Nodal explants, each containing an axillary bud, taken from <em>in vitro</em> grown shoots were inoculated in shoot proliferation medium, i.e., half strength Murashige and Skoog (MS) medium supplemented with benzyl aminopurine (BAP), kinetin, glycine and gibberellic acid (GA<sub>3</sub>). A higher number of shoots (5.33) with greater shoot length (2.75 cm) was produced in the medium supplemented with 1.0 mg L<sup>-1</sup> BAP and 0.1 mg L<sup>-1</sup> GA<sub>3</sub>. Calluses were induced from leaf explants taken from <em>in vitro</em> grown shoots. Callus induction was greater (73.00%) on the medium containing 2.0 mg L<sup>-1</sup> 2,4-dichlorophenoxyacetic acid (2,4-D), 0.3 mg L<sup>-1</sup> BAP and 0.2 mg L<sup>-1</sup> α-naphthaleneacetic acid (NAA). The maximum frequency of shoot regeneration (53.33%) was achieved on the medium supplemented with 1.5 mg L<sup>-1</sup> BAP and 0.5 mg L<sup>-1</sup> NAA, and the regenerated shoots successfully formed roots on growth regulator-free half strength MS medium.</p><p style="text-align: justify;"><strong>Conclusion</strong>: Optimizing the concentration of BAP and GA<sub>3</sub> and omitting the glycine and kinetin in the culture medium increased the number and length of shoots. Similarly, for inducing the callus of the leaf explants, taken from <em>in vitro</em> grown shoots, it is recommended to adjust the medium with the higher concentration of 2,4-D and lower concentrations of BAP. Moreover, the maximum number of shoots was regenerated on a medium supplemented with relatively high levels of both BAP and NAA (1.5 and 0.5 mg L<sup>-1</sup>, respectively). Finally, we suggest the half strength MS medium that is free from growth regulators for the root formation of the regenerated shoots.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Optimizing the concentration of growth regulators is crucial for the efficient micropropagation of a grape cultivar. Knowing the specific balance between the growth regulators is necessary to establish <em>in vitro</em> shoot cultures, callus induction and shoot regeneration and, hence, to propagate disease-free true to type grape cultivars in a short time.</p>

Highlights

  • The grape (Vitis vinifera L.), a globally cultivated commercial fruit crop, is native to warm and temperate zones

  • Signification et impact de l’étude : Optimiser la concentration des régulateurs de croissance est essentielle pour la « micropropagation » efficace d’un cépage

  • The number and length of shoots were maximum in the culture medium optimized with the combination of 1.0 mg L-1 benzyl aminopurine (BAP) and 0.1 mg L-1 GA3

Read more

Summary

Introduction

The grape (Vitis vinifera L.), a globally cultivated commercial fruit crop, is native to warm and temperate zones. The economic and health benefits of grape could be threatened by many serious diseases including fungal (powdery mildew and gray rot), viral (fan leaf roll fleck, stem pitting and corky bark) and bacterial diseases (pierces and necrosis) that are accountable for the low yield and shortened life span of grapevine (Jaskani et al, 2008). These diseases mainly originate from the infected propagating material obtained from conventional grapevine propagation methods. The risk of infection can be eliminated through unconventional propagation techniques like micropropagation or tissue culture, which ensures the mass production of virus- and disease-free « elite » planting material

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call