Abstract

AbstractAll‐solid‐state batteries are considered as an enabler for applications requiring high energy and power density. However, they still fall short of their theoretical potential due to various limitations. One issue is poor charge transport kinetics resulting from both material inherit limitations and non‐optimized design. Therefore, a better understanding of the relevant properties of the cathode microstructure is necessary to improve cell performance. In this article, we identify optimization potentials of the composite cathode by structure‐resolved electrochemical 3D‐simulations. In our simulation study, we investigate the influence of cathode active material fraction, density, particle size, and active material properties on cell performance. Special focus is set on the impact of grain boundaries on the cathode design. Based on our simulation results, we can predict target values for cell manufacturing and reveal promising optimization strategies for an improved cathode design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.