Abstract

Numerous increases in CO2 emissions are recognizable nowadays. Consequently, building integrated photovoltaics (BIPV) glows up as a trendy future solution. BIPVs are introduced by substituting one of the building components with a green energy harvesting source seeking for sustainability. Herein, we propose a BIPV techno-economic feasibility by utilizing in-Lab fabricated semi-transparent solar cells as a glass interface. Three alternatives have been taken into consideration with proposing on-roof Photovoltaic (PV) system (alternative #1) and semi-transparent solar cells working as glass interfaces (alternative #2) while keeping the governmental grid as a reference alternative (alternative #3). Daylight simulations and electric lighting loads optimization are investigated showing an overall energy budget per alternative. An optimum alternative with an overall excess energy of around 88 MWh as annual energy production was reached, while satisfying 100% of the targeted electrical loads. Levelized cost of energy (LCOE) is demonstrated as an economic parameter to evaluate the three proposed alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.