Abstract

A finite-element model of a polymer electrolyte membrane fuel cell (PEMFC) with fractal branching, lung-inspired flow-field is presented. The effect of the number of branching generations N on the thickness of the gas diffusion layer (GDL) and fuel cell performance is determined. Introduction of a fractal flow-field to homogenize reactant concentration at the flow-field | GDL interface allows for the use of thinner GDLs. The model is coupled with an optimized cathode catalyst layer microstructure with respect to platinum utilization and power density, revealing that the 2020 DoE target of ~8 kW/gPt is met at N = 4 generations, and a platinum utilization of ~36 kW/gPt is achieved at N = 6 generations. In terms of the overall fuel cell stack architecture, our results indicate that either the platinum loading or the number of cells in the stack can be reduced by ~75%, the latter option of which, when combined with a 100 µm GDL, can lead to >80% increase in the volumetric power density of the fuel cell stack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.