Abstract

Photodynamic therapy (PDT) is already used to treat many cancers, including breast cancer, the most common cancer in women worldwide. The destruction basis of this method is on produced singlet oxygen which is extremely reactive and is a major agent of tumor cell killing. The measurement of singlet oxygen produced within PDT is essential in predicting treatment outcomes and their optimization. This study aims to determine the optimal total light dose administered during PDT by calculating the singlet oxygen to facilitate the prediction of the treatment outcome in mice bearing 4T1 cell breast cancer. Monitoring the changes in photosensitizer fluorescence signals during PDT due to photobleaching can be one of the methods of determination of singlet oxygen generation in the PDT process. This study determined the oxygen singlet as a photodynamic dose from the three-dimensional Monte Carlo method and the photobleaching empirical dose constant. The photobleaching dose constant was established non-invasively by monitoring the invivo protoporphyrin IX (PpIX) fluorescence and photobleaching during PDT. The photobleaching dose constant (β) in J/cm2 was calculated using empirical fluorescence data. The invivo photobleaching dose constant of aminolevulinic acid was found to be 11.6 J/cm2 and based on this value, the optimal treatment light dose was estimated at 120 J/cm2 in mice bearing 4T1 breast cancer. It is concluded that information can be obtained regarding optimal treatment parameters by monitoring the invivo PpIX fluorescence and photobleaching during PDT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call