Abstract

Convolutional Neural Networks (CNNs) are extensively used in a wide range of applications, commonly including computer vision tasks like image and video classification, recognition and segmentation. Recent research results demonstrate that multi-layer (deep) network involving mono-dimensional convolutions and dilation can be effectively used in time series and sequences classification and segmentation, as well as in tasks involving sequence modeling. These structures, commonly referred to as Temporal Convolutional Networks (TCNs), represent an extremely promising alternative to recurrent architectures, commonly used across a broad range of sequence modeling tasks. While FPGA based inference accelerators for classic CNNs are widespread, literature is lacking in a quantitative evaluation of their usability on inference for TCN models. In this paper we present such an evaluation, considering a CNN accelerator with specific features supporting TCN kernels as a reference and a set of state-of-the-art TCNs as a benchmark. Experimental results show that, during TCN execution, operational intensity can be critical for the overall performance. We propose a convolution scheduling based on batch processing that can boost efficiency up to 96% of theoretical peak performance. Overall we can achieve up to 111,8 GOPS/s and a power efficiency of 33,8 GOPS/s/W on an Ultrascale+ ZU3EG (up to $10\times$ speedup and $3\times$ power efficiency improvement with respect to pure software implementation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.